Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

[(4,4-Dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]phosphonic acid

Petar Todorov, ${ }^{\text {a }}$ Emilia Naydenova, ${ }^{\text {a }}$ Rosica Petrova, ${ }^{\text {b }}{ }^{\text {* }}$ Boris Shivachev ${ }^{\text {b }}$ and Kolio Troev ${ }^{\text {c }}$
${ }^{\text {a }}$ University of Chemical Technology and Metallurgy, Department of Organic Chemistry, KI. Ohridski Boulevard 8, 1756 Sofia, Bulgaria, ${ }^{\text {b }}$ Bulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Academician G. Bonchev Street, Building 107, 1113 Sofia, Bulgaria, and ${ }^{\text {CInstitute of Polymers, }}$ Bulgarian Academy of Sciences, Academician G. Bonchev Street, Building 108, 1113 Sofia, Bulgaria
Correspondence e-mail: rosica.pn@clmc.bas.bg

Received 30 August 2006
Accepted 6 October 2006
Online 31 October 2006

The title compound, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}$, was synthesized as an intermediate phase in a search for new N-(phosphonomethyl)glycine derivatives. The molecules are held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains along the b axis in the crystal structure. The observed molecular structure is compared with that calculated by the density functional theory method.

Comment

The herbicidal activities of derivatives of N-(phosphonomethyl)glycine (glyphosate) were reported by Baird et al. (1971). These compounds have also been effective in suppressing tumour growth and have been investigated as potential lead compounds with anticancer, antiviral and antibacterial activities (Kafarski \& Lejczak, 1991; Alonso et al., 2000; Camden, 1999, 2000). Recently, we synthesized a series of five new α-aminophosphonic acids and investigated their genotoxic and antiproliferative activities (Naydenova et al., 2006). Among the aforesaid five compounds, only for compound (I) were we able to obtain crystals suitable for X-ray diffraction. In this paper, we report the crystal structure of (I) and compare its geometric parameters with those optimized by density functional theory (DFT) calculations. Such a

(I)
comparison is required in order to verify whether the DFT method could be employed for investigating the molecular structures of the other four compounds in the series.

The molecular structure of (I) is shown in Fig. 1. The structural features of the oxazolidin-2-one ring are comparable with those of similar compounds (Rios et al., 2002; Eknoian et al., 1998). The ring has an envelope conformation, with atom C4 deviating by 0.416 (6) \AA from the plane defined by the other four atoms ($\mathrm{N} 3 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 5$). The P1-C8 bond length of 1.811 (4) \AA and the $\mathrm{N} 3-\mathrm{C} 8-\mathrm{P} 1$ angle of 113.5 (2) ${ }^{\circ}$ are comparable with the corresponding values found for the glyphosate molecule [1.817 (3) A and 111.7 (2) ${ }^{\circ}$, respectively; Sheldrick \& Morr (1981)]. The similarity in P1 - O4 and P1O5 bond distances (Table 1) corresponds to the fact that there is no transfer of a H atom from the acid group to the N atom.

Symmetrically equivalent molecules, generated by a 2_{1} screw axis, are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a chain parallel to the b axis (Fig. 2). In the chain, the molecules face one another in such a way that the phosphonic acid groups form the inner side of the chain, whereas the oxazolidin-2-one groups are outside it. Additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the chains into 'pseudolayers' parallel to the (100) plane. It is worth noting that polar interactions exist inside the pseudo-layers, whereas non-polar interactions are found outside them.

The values of the bond lengths and angles calculated by the DFT method are in good agreement with the experimental data (Table 1), the differences not exceeding $0.06 \AA$ for the bond lengths and 3° for the valence angles. This shows that an envelope conformation of the oxazolidin-2-one ring is most

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A view of the chain of (I) along the b axis. H atoms have been omitted except for those involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dotted lines). [Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $x, y-1, z$.]
probable, with atom C 4 displaced by $0.322 \AA$ from the leastsquares plane formed by the other four atoms. The major difference between the computed and experimental structures is in the value of the $\mathrm{N} 3-\mathrm{C} 8-\mathrm{P} 1-\mathrm{O} 4$ torsion angle $[-78.2$ and $-63.6(3)^{\circ}$, respectively]. Consequently, the intramolecular interaction between the oxazolidinone and phosphonic acid parts, $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$, is more pronounced in the calculated structure than in the experimental one [O4$\mathrm{O} 2=2.727$ and 3.250 (4) \AA, respectively].

Experimental

Compound (I) was prepared according to the method of Naydenova et al. (2006). Crystals of (I) suitable for single-crystal X-ray diffraction were grown as colourless needles by slow evaporation of an aqueous solution at 277 K .

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}$
$M_{r}=209.14$
Monoclinic, $P 2_{1} / c$
$a=9.2775$ (13) A
$b=6.7213$ (16) \AA
$c=14.875$ (2) \AA
$\beta=94.614$ (11) ${ }^{\circ}$
$V=924.6(3) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
 diffractometer
 $\omega / 2 \theta$ scans
 5096 measured reflections
 2661 independent reflections
 1642 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0712 P)^{2} \\
&+1.849 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.192$
$S=0.98$
2661 reflections
118 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Prism, colourless
$0.24 \times 0.24 \times 0.22 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.096 \\
& \theta_{\max }=30.0^{\circ} \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about their parent $\mathrm{C}-\mathrm{C}$ bonds. The other H atoms were placed in calculated positions, with methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and hydroxy $\mathrm{O}-\mathrm{H}=0.82 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

DFT calculations at the B3LYP/6311++G(d,p) level of theory using GAUSSIAN03 (Frisch et al., 2004) were performed. Optimizations started from the X-ray geometry of (I) and were followed by optimization of all geometric variables (bond lengths and angles) with no symmetry constraints.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Bulgarian National Fund of Scientific Research (contract No. BYX15).

Table 1
Comparison of geometric data for (I) from both experimental and DFT calculations $\left(\AA,{ }^{\circ}\right)$.

	Experimental	DFT
C2-N3	$1.336(4)$	1.361
C4-N3	$1.487(4)$	1.479
C8-N3	$1.459(4)$	1.454
C8-P1	$1.811(4)$	1.850
O3-P1	$1.473(3)$	1.483
O4-P1	$1.543(3)$	1.596
O5-P1	$1.552(3)$	1.612
O2-C2-N3	$127.7(4)$	127.03
C6-C4-C7	$112.2(4)$	111.63
N3-C4-C5	$98.1(3)$	98.49
N3-C8-P1	$113.5(2)$	112.4
O3-P1-O4	$113.82(17)$	113.8
O4-P1-O5	$101.15(14)$	101.7
O5-P1-C8	$104.69(16)$	102.24
O3-P1-C8-N3	$62.0(3)$	58.87
O5-P1-C8-N3	$-170.7(2)$	-175.95
P1-C8-N3-C2	$91.6(4)$	70.08
C8-N3-C2-O2	$-4.4(6)$	-6.42
O1-C2-N3-C4	$9.9(4)$	5.00

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {i }}$	0.82	1.73	2.503 (4)	157
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.82	2.609 (4)	162
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 5^{\text {iii }}$	0.97	2.68	3.553 (4)	151
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.96	2.52	3.365 (4)	147

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB3021). Services for accessing these data are described at the back of the journal.

References

Alonso, E., Alonso, E., Solis, A. \& del Pozo, C. (2000). Synlett, pp. 698-700. Baird, D. D., Upchurch, R. P., Homesley, W. B. \& Franz, J. E. (1971). Proc. North. Cent. Weed Contr. Conf. 26, 64-68.
Camden, J. B. (1999). US Patent No. 5902804.
Camden, J. B. (2000). US Patent No. 6090796.
Eknoian, M. W., Webb, T. R., Worley, S. D., Fleury, J. R. \& Maddox, S. D. (1998). Acta Cryst. C54, 1529-1532.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsburgh, Pennsylvania, USA.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kafarski, P. \& Lejczak, B. (1991). Phosphorus Sulfur Silicon, 63, 193-215.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Naydenova, E., Topashka-Ancheva, M., Todorov, P., Yordanova, Ts. \& Troev, K. (2006). Bioorg. Med. Chem. 14, 2190-2196.

Rios, R., Pericas, M. A., Moyano, A., Maestro, M. A. \& Mahia, J. (2002). Org. Lett. 7, 1205-1208.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, W. S. \& Morr, M. (1981). Acta Cryst. B37, 733-734.

